examples/eg_plds_switched_ctrl.cpp #
Functions #
Name | |
---|---|
auto | main() |
Function Details #
main #
auto main()
Source code #
//===-- eg_plds_switched_ctrl.cpp - Example Switched PLDS Control ---===//
//
// Copyright 2021 Michael Bolus
// Copyright 2021 Georgia Institute of Technology
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
#include <ldsCtrlEst>
using lds::data_t;
using lds::Matrix;
using lds::Vector;
using std::cout;
auto main() -> int {
cout << " ********** Example Switched Poisson LDS Control ********** \n\n";
// whether to do switched control
bool do_switch_ctrl = true;
// Make SISO system sampled at 1kHz
data_t dt = 1e-3;
size_t n_u = 1;
size_t n_x = 1;
size_t n_y = 1;
// no time steps for simulation.
auto n_t = static_cast<size_t>(30.0 / dt);
// for simulating switching
size_t which_mode = 1;
data_t pr_21 = 1e-3; // prob mode 1 -> 2
data_t pr_12 = pr_21; // prob mode 2 -> 1
// simulated system being controlled
lds::poisson::System controlled_system(n_u, n_x, n_y, dt);
// **Assume the system is not well characterized by one LDS, but is well
// characterized by two LDS models with different input matrices.**
data_t scale_sys_b = 2;
Matrix a(n_x, n_x, arma::fill::eye);
a[0] = 0.985;
Matrix b1 = Matrix(n_x, n_u).fill(0.05);
Vector d = Vector(n_y, arma::fill::zeros).fill(log(1 * dt));
controlled_system.set_A(a);
controlled_system.set_B(b1);
controlled_system.set_d(d);
controlled_system.Reset(); // reset to initial conditions
// reference
Vector y_ref0 = Vector(n_y, arma::fill::zeros).fill(25.0 * dt);
// Let underlying system 1 be more sensitive than system 2
Matrix b2 = Matrix(n_x, n_u).fill(b1[0] / scale_sys_b);
// create switched controller
lds::poisson::SwitchedController switched_controller;
lds::UniformMatrixList<> k_x; // feedback controller gains
{
// create switched controller sub-systems
// system 1
lds::poisson::System sys1(controlled_system);
// set process noise covariance
Matrix q_controller = Matrix(n_x, n_x, arma::fill::eye) * 5e-3;
sys1.set_Q(q_controller);
// adaptively estimate process disturbance (m)
// n.b. using arbitrary default value for process noise if enabled.
sys1.do_adapt_m = true;
// setting initial mode to target to avoid large error at onset:
Vector x0_controller = arma::log(y_ref0) - d;
sys1.set_x0(x0_controller);
sys1.Reset(); // reset to initial conditions
cout << ".....................................\n";
cout << "sys1:\n";
cout << ".....................................\n";
sys1.Print();
cout << ".....................................\n";
// system 2
lds::poisson::System sys2 = sys1;
// set parameters
sys2.set_B(b2);
cout << ".....................................\n";
cout << "sys2:\n";
cout << ".....................................\n";
sys2.Print();
cout << ".....................................\n";
lds::UniformSystemList<lds::poisson::System> systems({sys1, sys2});
// controller gains for underlying system s:
Matrix k_x1(n_u, n_x, arma::fill::ones);
Matrix k_x2 = scale_sys_b * k_x1; // system2 is x-times less sensitive.
k_x = lds::UniformMatrixList<>({k_x1, k_x2});
data_t u_lb = 0.0;
data_t u_ub = 5.0;
switched_controller = std::move(
lds::poisson::SwitchedController(std::move(systems), u_lb, u_ub));
}
// Control variables
size_t control_type = 0; // no integral action, etc
switched_controller.set_control_type(control_type);
switched_controller.set_Kc(std::move(k_x));
switched_controller.set_y_ref(y_ref0);
std::vector<lds::poisson::System> systems_vec(3, lds::poisson::System());
lds::UniformSystemList<lds::poisson::System> systems(std::move(systems_vec));
cout << ".....................................\n";
cout << "switched_controller:\n";
cout << ".....................................\n";
switched_controller.Print();
cout << ".....................................\n";
// Fake measurements
Matrix z(n_y, n_t, arma::fill::zeros);
// Will later contain control.
Matrix u(n_u, n_t, arma::fill::zeros);
// create Matrix to save outputs in...
Matrix y_hat(n_y, n_t, arma::fill::zeros);
Matrix y_true(n_y, n_t, arma::fill::zeros);
Matrix y_ref = Matrix(n_y, n_t).fill(y_ref0[0]);
// modes and gain/disturbance params
Matrix x_hat(n_x, n_t, arma::fill::zeros);
Matrix x_true(n_x, n_t, arma::fill::zeros);
Matrix mode(1, n_t, arma::fill::ones);
// set initial val
y_hat.col(0) = switched_controller.sys().y();
y_true.col(0) = controlled_system.y();
x_hat.col(0) = switched_controller.sys().x();
x_true.col(0) = controlled_system.x();
cout << "Starting " << n_t * dt << " sec simulation ... \n";
auto start = std::chrono::high_resolution_clock::now();
for (size_t t = 1; t < n_t; t++) {
// Let the controlled system stochastically change gain
// Assume another algorithm decodes this mode change and signals the
// switched_controller
Vector chance(1, arma::fill::randu);
if (which_mode == 1) // mode1
{
if (chance[0] < pr_21) {
which_mode = 2;
controlled_system.set_B(b2);
if (do_switch_ctrl) {
switched_controller.Switch(1);
}
}
} else { // mode2
if (chance[0] < pr_12) {
which_mode = 1;
controlled_system.set_B(b1);
if (do_switch_ctrl) {
switched_controller.Switch(0);
}
}
}
// Simulate the true system.
z.col(t) = controlled_system.Simulate(u.col(t - 1));
// perform control
u.col(t) = switched_controller.ControlOutputReference(z.col(t));
mode.col(t) = which_mode;
y_ref.col(t) = y_ref0;
y_true.col(t) = controlled_system.y();
x_true.col(t) = controlled_system.x();
y_hat.col(t) = switched_controller.sys().y();
x_hat.col(t) = switched_controller.sys().x();
}
auto finish = std::chrono::high_resolution_clock::now();
std::chrono::duration<data_t, std::milli> sim_time_ms = finish - start;
cout << "Finished simulation in " << sim_time_ms.count() << " ms.\n";
cout << "(app. " << (sim_time_ms.count() / n_t) * 1e3 << " us/time-step)\n";
// saved variables: dt, y_hat, x_hat, m_hat, z, u, y_ref, y_true,
// x_true, m_true saving with hdf5 via armadillo
arma::hdf5_opts::opts replace = arma::hdf5_opts::replace;
auto dt_vec = Vector(1).fill(dt);
dt_vec.save(arma::hdf5_name("eg_plds_switched_ctrl.h5", "dt"));
y_ref.save(arma::hdf5_name("eg_plds_switched_ctrl.h5", "y_ref", replace));
u.save(arma::hdf5_name("eg_plds_switched_ctrl.h5", "u", replace));
z.save(arma::hdf5_name("eg_plds_switched_ctrl.h5", "z", replace));
x_true.save(arma::hdf5_name("eg_plds_switched_ctrl.h5", "x_true", replace));
y_true.save(arma::hdf5_name("eg_plds_switched_ctrl.h5", "y_true", replace));
x_hat.save(arma::hdf5_name("eg_plds_switched_ctrl.h5", "x_hat", replace));
y_hat.save(arma::hdf5_name("eg_plds_switched_ctrl.h5", "y_hat", replace));
mode.save(arma::hdf5_name("eg_plds_switched_ctrl.h5", "mode", replace));
return 0;
}
Updated on 19 May 2022 at 17:16:05 Eastern Daylight Time