examples/eg_plds_est.cpp #
Functions #
Name | |
---|---|
Matrix | random_walk(size_t n_t, const Matrix & Q, const Vector & x0) |
int | main() |
Function Details #
random_walk #
Matrix random_walk(
size_t n_t,
const Matrix & Q,
const Vector & x0
)
main #
int main()
Source code #
//===-- eg_plds_est.cpp - Example PLDS Estimation -------------------------===//
//
// Copyright 2021 Michael Bolus
// Copyright 2021 Georgia Institute of Technology
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
#include <ldsCtrlEst>
using lds::Matrix;
using lds::Vector;
using lds::data_t;
using std::cout;
// for generating random input
Matrix random_walk(size_t n_t, const Matrix& Q, const Vector& x0);
int main() {
cout << " ********** Example Poisson LDS Estimation ********** \n\n";
// Make SISO system sampled at 1kHz
data_t dt = 1e-3;
size_t n_u = 1; // no. inputs
size_t n_x = 1; // no. states
size_t n_y = 1; // no. outputs
auto n_t = static_cast<size_t>(30 / dt); // no time steps for simulation.
// construct ground truth system...
lds::poisson::System system_true(n_u, n_x, n_y, dt);
// Model parameters
Matrix a_true(n_x, n_x, arma::fill::eye);
a_true[0] = exp(-dt / 0.075);
Matrix b_true = Matrix(n_x, n_u).fill(1e-2);
Vector m0_true = Vector(n_x, arma::fill::zeros).fill(-7e-2); // disturbance
Vector x0_true = m0_true * arma::inv(Matrix(n_x, n_x, arma::fill::eye) -
a_true); // initial state
// Assign params.
system_true.set_A(a_true);
system_true.set_B(b_true);
system_true.set_x0(x0_true);
system_true.set_m(m0_true);
system_true.Reset();
// Construct system for estimation
// e.g., will create a model with incorrect disturbance
lds::poisson::System system_estimator(n_u, n_x, n_y, dt);
// Can copy parameters from another system object
system_estimator = system_true;
// wrong disturbance
Vector m0_est = m0_true * 2;
system_estimator.set_m(m0_est);
// set new initial conditions
Vector x0_est = m0_est * arma::inv(Matrix(n_x, n_x, arma::fill::eye) -
a_true); // initial state
system_estimator.set_x0(x0_est);
system_estimator.Reset(); // reset to initial condition.
// turn on adaptive disturbance estimation
system_estimator.do_adapt_m = true;
// set adaptation rate by changing covariance of assumed process noise acting
// on random-walk evolution of m
Matrix q_m = Matrix(n_x, n_x, arma::fill::eye) * 1e-6;
system_estimator.set_Q_m(q_m);
cout << ".....................................\n";
cout << "estimator:\n";
cout << ".....................................\n";
system_estimator.Print();
cout << ".....................................\n";
// Set up simulation :
// Simulated measurements
Matrix z(n_y, n_t, arma::fill::zeros);
// Stimulus (generate random stimulus)
Matrix q_u =
Matrix(n_u, n_u, arma::fill::eye) * 1e-3; // cov of random walk
Matrix u = random_walk(n_t, q_u, Vector(n_u, arma::fill::zeros));
// create matrix to save outputs in...
Matrix y_hat(n_y, n_t, arma::fill::zeros);
Matrix y_true(n_y, n_t, arma::fill::zeros);
// states and disturbance params
Matrix x_hat(n_x, n_t, arma::fill::zeros);
Matrix m_hat(n_x, n_t, arma::fill::zeros);
Matrix x_true(n_x, n_t, arma::fill::zeros);
Matrix m_true(n_x, n_t, arma::fill::zeros);
// initial conditions
y_hat.col(0) = system_estimator.y();
y_true.col(0) = system_true.y();
x_hat.col(0) = system_estimator.x();
x_true.col(0) = system_true.x();
m_hat.col(0) = system_estimator.m();
m_true.col(0) = system_true.m();
cout << "Starting " << n_t * dt << " sec simlation ... \n";
auto start = std::chrono::high_resolution_clock::now();
for (size_t t = 1; t < n_t; t++) {
// Simlate the true system.
z.col(t) = system_true.Simulate(u.col(t - 1));
// Filter (predict -> update)
system_estimator.Filter(u.col(t - 1), z.col(t));
// save signals
y_hat.col(t) = system_estimator.y();
y_true.col(t) = system_true.y();
x_true.col(t) = system_true.x();
m_true.col(t) = system_true.m();
x_hat.col(t) = system_estimator.x();
m_hat.col(t) = system_estimator.m();
}
auto finish = std::chrono::high_resolution_clock::now();
std::chrono::duration<data_t, std::milli> sim_time_ms = finish - start;
cout << "Finished simlation in " << sim_time_ms.count() << " ms.\n";
cout << "(app. " << (sim_time_ms.count() / n_t) * 1e3 << " us/time-step)\n";
// saved variables: dt, y_hat, x_hat, m_hat, z, u, y_true,
// x_true, m_true saving with hdf5 via armadillo
arma::hdf5_opts::opts replace = arma::hdf5_opts::replace;
auto dt_vec = Vector(1).fill(dt);
dt_vec.save(arma::hdf5_name("eg_plds_est.h5", "dt"));
u.save(arma::hdf5_name("eg_plds_est.h5", "u", replace));
z.save(arma::hdf5_name("eg_plds_est.h5", "z", replace));
x_true.save(arma::hdf5_name("eg_plds_est.h5", "x_true", replace));
m_true.save(arma::hdf5_name("eg_plds_est.h5", "m_true", replace));
y_true.save(arma::hdf5_name("eg_plds_est.h5", "y_true", replace));
x_hat.save(arma::hdf5_name("eg_plds_est.h5", "x_hat", replace));
m_hat.save(arma::hdf5_name("eg_plds_est.h5", "m_hat", replace));
y_hat.save(arma::hdf5_name("eg_plds_est.h5", "y_hat", replace));
return 0;
}
// for generating random input
Matrix random_walk(size_t n_t, const Matrix& Q, const Vector& x0) {
size_t n = Q.n_rows;
if ((n != Q.n_cols) || (Q.n_cols != Q.n_rows)) {
throw std::logic_error("Q must be `n` x `n`.");
}
Matrix x(n, n_t, arma::fill::zeros);
x.col(0) = x0;
for (size_t t = 1; t < n_t; t++) {
x.col(t) = x.col(t - 1) + arma::mvnrnd(Vector(n, arma::fill::zeros), Q);
}
return x;
}
Updated on 19 May 2022 at 17:16:05 Eastern Daylight Time