lds::Fit #
LDS Fit Type.
#include <lds_fit.h>
Inherited by lds::gaussian::Fit, lds::poisson::Fit
Public Functions #
Name | |
---|---|
Fit() =default Constructs a new Fit. |
|
Fit(size_t n_u, size_t n_x, size_t n_y, data_t dt) Constructs a new Fit. |
|
virtual | ~Fit() =default |
size_t | n_u() const gets number of inputs |
size_t | n_x() const gets number of states |
size_t | n_y() const gets number of outputs |
data_t | dt() const gets sample period |
const Matrix & | A() const gets state matrix |
const Matrix & | B() const gets input matrix |
const Vector & | g() const gets input gain |
const Vector & | m() const gets process disturbance |
const Matrix & | Q() const gets process noise covariance |
const Vector & | x0() const gets initial state estimate |
const Matrix & | P0() const gets covariance of initial state estimate |
const Matrix & | C() const gets output matrix |
const Vector & | d() const gets output bias |
virtual const Matrix & | R() const =0 |
void | set_A(const Matrix & A) sets state matrix |
void | set_B(const Matrix & B) sets input matrix |
void | set_g(const Vector & g) sets input gain/conversion factor |
void | set_m(const Vector & m) sets process disturbance |
void | set_Q(const Matrix & Q) sets process noise covariance |
virtual void | set_R(const Matrix & R) =0 sets output noise covariance (if any) |
void | set_x0(const Vector & x0) sets initial state estimate |
void | set_P0(const Matrix & P0) sets initial state estimate covariance |
void | set_C(const Matrix & C) sets output matrix |
void | set_d(const Vector & d) sets output bias |
View | f(Matrix & x, const Matrix & u, size_t t) system dynamics function |
View | f(Matrix & x_pre, const Matrix & x_post, const Matrix & u, size_t t) system dynamics function |
virtual View | h(Matrix & y, const Matrix & x, size_t t) =0 output function |
Protected Attributes #
Name | |
---|---|
data_t | dt_ sample period |
Matrix | A_ state matrix |
Matrix | B_ input matrix |
Vector | g_ input gain |
Vector | m_ process noise mean |
Matrix | Q_ process noise cov |
Matrix | C_ output matrix |
Vector | d_ output bias |
Matrix | R_ measurement noise |
Vector | x0_ initial state |
Matrix | P0_ initial covar |
size_t | n_u_ number of inputs |
size_t | n_x_ number of states |
size_t | n_y_ number of outputs |
Public Function Details #
Fit #
Fit() =default
Fit #
Fit(
size_t n_u,
size_t n_x,
size_t n_y,
data_t dt
)
Parameters:
- n_u number of inputs
- n_x number of states
- n_y number of outputs
- dt sample period
~Fit #
virtual ~Fit() =default
n_u #
inline size_t n_u() const
n_x #
inline size_t n_x() const
n_y #
inline size_t n_y() const
dt #
inline data_t dt() const
A #
inline const Matrix & A() const
B #
inline const Matrix & B() const
g #
inline const Vector & g() const
m #
inline const Vector & m() const
Q #
inline const Matrix & Q() const
x0 #
inline const Vector & x0() const
P0 #
inline const Matrix & P0() const
C #
inline const Matrix & C() const
d #
inline const Vector & d() const
R #
virtual const Matrix & R() const =0
Reimplemented by: lds::gaussian::Fit::R, lds::poisson::Fit::R
set_A #
inline void set_A(
const Matrix & A
)
set_B #
inline void set_B(
const Matrix & B
)
set_g #
inline void set_g(
const Vector & g
)
set_m #
inline void set_m(
const Vector & m
)
set_Q #
inline void set_Q(
const Matrix & Q
)
set_R #
virtual void set_R(
const Matrix & R
) =0
Reimplemented by: lds::gaussian::Fit::set_R, lds::poisson::Fit::set_R
set_x0 #
inline void set_x0(
const Vector & x0
)
set_P0 #
inline void set_P0(
const Matrix & P0
)
set_C #
inline void set_C(
const Matrix & C
)
set_d #
inline void set_d(
const Vector & d
)
f #
inline View f(
Matrix & x,
const Matrix & u,
size_t t
)
Parameters:
- x state estimate (over time)
- u input (over time)
- t time index
Return: view of updated state
f #
inline View f(
Matrix & x_pre,
const Matrix & x_post,
const Matrix & u,
size_t t
)
Parameters:
- x_pre predicted state est.
- x_post posterior state est.
- u input (over time)
- t time index
Return: view of predicted state
h #
virtual View h(
Matrix & y,
const Matrix & x,
size_t t
) =0
Parameters:
- y output estimate (over time)
- x state estimate (over time)
- t time index
Return: output
Reimplemented by: lds::poisson::Fit::h, lds::gaussian::Fit::h
Protected Attribute Details #
**dt_** #
data_t dt_ {};
**A_** #
Matrix A_;
**B_** #
Matrix B_;
**g_** #
Vector g_;
**m_** #
Vector m_;
**Q_** #
Matrix Q_;
**C_** #
Matrix C_;
**d_** #
Vector d_;
**R_** #
Matrix R_;
**x0_** #
Vector x0_;
**P0_** #
Matrix P0_;
**n_u_** #
size_t n_u_ {};
**n_x_** #
size_t n_x_ {};
**n_y_** #
size_t n_y_ {};
Updated on 19 May 2022 at 17:16:03 Eastern Daylight Time